Resonance Graphs and a Binary Coding for the 1-Factors of Benzenoid Systems

نویسندگان

  • Heping Zhang
  • Peter Che Bor Lam
  • Wai Chee Shiu
چکیده

Applying the recently obtained distributive lattice structure on the set of 1-factors, we show that the resonance graphs of any benzenoid systems G, as well as of general plane (weakly) elementary bipartite graphs, are median graphs and thus extend greatly Klavžar et al.’s result. The n-dimensional vectors of nonnegative integers as a labelling for the 1-factors of G with n inner faces are described. The labelling preserves the partial ordering of the above-mentioned lattice and can be transformed into a binary coding for the 1-factors. A simple criterion for such a labelling being binary is given. In particular, Klavžar et al.’s algorithm is modified to generate this binary coding for the 1-factors of a cata-condensed benzenoid system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibonacci dimension of the resonance graphs of catacondensed benzenoid graphs

The Fibonacci dimension fdim(G) of a graph G was introduced in [1] as the smallest integer d such that G admits an isometric embedding into Γd, the d-dimensional Fibonacci cube. The Fibonacci dimension of the resonance graphs of catacondensed benzenoid systems is studied. This study is inspired by the fact, that the Fibonacci cubes are precisely the resonance graphs of a subclass of the catacon...

متن کامل

Binary coding of algebraic Kekulé structures of catacondensed benzenoid graphs

The algebraic Kekulé structure of a finite catacondensed benzenoid graph with h hexagons is described by a binary code of length h. The procedure can be reversed, any (algebraic) Kekulé structure can be recovered from its binary code. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

On Resonance Graphs of Catacondensed Hexagonal Graphs: Structure, Coding, and Hamilton Path Algorithm

The vertex set of the resonance graph of a hexagonal graph G consists of 1-factors of G, two 1-factors being adjacent whenever their symmetric difference forms the edge set of a hexagon of G. A decomposition theorem for the resonance graphs of catacondensed hexagonal graph is proved. The theorem intrinsically uses the Cartesian product of graphs. A canonical binary coding of 1-factors of cataco...

متن کامل

A min-max result on catacondensed benzenoid graphs

The resonance graph of a benzenoid graph G has the 1-factors of G as vertices, two 1-factors being adjacent if their symmetric difference forms the edge set of a hexagon of G. It is proved that the smallest number of elementary cuts that cover a catacondensed benzenoid graph equals the dimension of a largest induced hypercube of its resonance graph.

متن کامل

Resonance graphs of catacondensed even ring systems are median

Let G be a planar embedded 2-connected graph. Then the vertices of its resonance graph R(G) are the 1-factors of G, two 1-factors being adjacent whenever their symmetric difference is a bounded face of G. For a class of graphs containing the chemically important catacondensed benzenoid graphs we show that the resonance graphs are median. In particular, if G belongs to this class, R(G) has an is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2008